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Our concern is with the evolution of large-amplitude Tollmien-Schlichting waves in 
boundary-layer flows. In fact, the disturbances we consider are of a comparable 
size to the unperturbed state. We shall describe two-dimensional disturbances which 
are locally periodic in time and space. This is achieved using a phase equation 
approach of the type discussed by Howard & Kopell(l977) in the context of reaction- 
diffusion equations. We shall consider both large and O( 1) Reynolds number flows 
though, in order to keep our asymptotics respectable, our finite-Reynolds-number 
calculation will be carried out for the asymptotic suction flow. Our large-Reynolds- 
number analysis, though carried out for Blasius flow, is valid for any steady two- 
dimensional boundary layer. In both cases the phase-equation approach shows 
that the wavenumber and frequency will develop shocks or other discontinuities as 
the disturbance evolves. As a special case we consider the evolution of constant 
frequency/wavenumber disturbances and show that their modulational instability is 
controlled by Burgers equation at finite-Reynolds-number and by a new integro- 
differential evolution equation at large-Reynolds-numbers. For the large Reynolds 
number case the evolution equation points to the development of a spatially localized 
singularity at a finite time. 

1. Introduction 
Most boundary layers of practical importance are susceptible to a variety of insta- 

bility mechanisms which lead to the onset of transition to turbulence. Usually, more 
than one mechanism will be operational in any particular case, and a full understand- 
ing of how transition occurs will require a detailed understanding of the nonlinear 
interaction of the different modes of instability. Here, we will concern ourselves 
with the strongly nonlinear evolution of a slowly varying Tollmien-Schlichting wave 
system. In the first instance we consider lower branch Tollmien-Schlichting waves 
which are known to be governed by triple-deck theory (e.g. Smith 1979a,b; Hall 
& Smith 1984; Smith & Burggraf 1985). Then we shall consider the corresponding 
problem at finite Reynolds numbers. It is worth pointing out that the approach we 
use here can be used to describe other modes of instability and is, in fact, based on 
ideas given some years ago by Howard & Kopell (1977) who were interested in the 
evolution of nonlinear wave systems in reaction-diffusion equations. 

The first application of triple-deck theory to describe the linear and nonlinear 
growth of lower branch Tollmien-Schlichting waves is apparently due to Smith 
(1979a.b) though Lin (1966) clearly recognized the appropriate large-Reynolds- 
number scalings for Tollmien-Schlichting waves long before triple-deck theory was 
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invented. The investigation of Smith (1979~) showed how non-parallel effects could 
be taken care of in a self-consistent manner using asymptotic methods. Previously 
Gaster (1974) used a successive approximation procedure to tackle the same kind of 
problem. Subsequently Smith (1979b) showed how the nonlinear growth of Tollmien- 
Schlichting waves could be taken care of using triple-deck theory. However, the 
results of Smith (1979b), and the subsequent extension to three-dimensional modes by 
Hall & Smith (1984), are confined to the weakly nonlinear stage where an ordinary 
differential amplitude equation describes the initial stage of the bifurcation from a 
linearly growing disturbance. Some years later Smith & Burggraf (1985) discussed 
the high-frequency limit of the lower branch triple-deck problem and uncovered a 
sequence of nonlinear structures governing a sequence of successively more nonlinear 
wave interactions. Related work on the high-frequency limit had been previously 
carried out by Zhuk & Ryzhov (1982). 

Subsequently Smith & Stewart (1987) investigated the interaction of three-dimen- 
sional modes at high frequencies and obtained reasonable agreement with the exper- 
iments of Kachanov & Levchenko (1984). However, a referee of this paper pointed 
out to the author that in a recent paper Khokhlov (1994) claims that the work of 
Smith & Stewart (1987) is in error because of its incorrect treatment of the critical 
layer. 

In the first instance we shall restrict our attention to two-dimensional waves and 
determine how the wavenumber and frequency of a nonlinear wave system may be 
found as it moves through a growing boundary layer. This problem has not yet been 
addressed. Intuitively one would expect that a small-amplitude wave would evolve 
from its weakly nonlinear form into a larger amplitude state until it is described by 
the Smith-Burggraf structure at sufficiently large values of the local frequency of the 
disturbance. Our calculations suggest that this is not the case since we were unable 
to find finite-amplitude periodic solutions at large frequencies. However, it could be 
that finite-amplitude periodic states exist at high frequencies but are not continuously 
connected with the bifurcation point of.linear theory. 

The asymptotic structure we use is based on the so-called ‘phase-equation’ ap- 
proach used so successfully to describe large-amplitude Benard convection in large 
containers by, amongst others, Kramer, Ben Jacob, Brand & Cross (1982); Cross 
& Newell (1984); Newell, Passot & Lega (1993). Using this approach it has been 
possible to describe the experimentally observed slowly varying planform of Benard 
convection. Thus, for example, the dislocation of convection rolls is now reasonably 
well understood using the phase equation approach. Interestingly enough, it turns 
out that the essential ideas of this approach had been elucidated in the context of 
travelling wave instabilities several years earlier, see Howard & Kopell (1977) and 
indeed the method can be found in Whitham (1974). The evolution of travelling 
waves in a Blasius boundary layer is the subject of the first part of this work and not 
surprisingly the analysis to be used has similarities with that of the latter authors. 

The essential idea behind the phase-equation approach may be explained in the 
following manner. Suppose there exists some flow which is unstable to a travelling 
wave disturbance of wavenumber a and frequency SZ. For a fully nonlinear disturbance 
the frequency Q will be a function of a which itself can be thought of as a function 
of A ,  a measure of the size of disturbance. If we let A tend to zero then, for small 
A ,  the quantities a and 52 will differ from their linear neutral values by O(A)2  so 
that finite-amplitude disturbances begin as supercritical bifurcations from the basic 
state. For 0(1) values of A the quantities a and 52 are accessible only by numerical 
means, see for example Herbert (1977) for details of the computation of LY and 52 
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for Tollmien-Schlichting waves in plane Poiseuille flow or Conlisk, Burggraf & Smith 
( 1987) for a similar calculation for Tollmien-Schlichting waves in Blasius boundary 
layers at large Reynolds numbers. In some cases the frequency of the waves is zero 
and the wavenumber of the disturbances may be sensibly held fixed when the control 
parameter or disturbance size is varied, see for example Hall (1988) for a discussion 
of the fully nonlinear Gortler problem in a growing boundary layer. For a travelling 
wave disturbance in a growing boundary layer we expect that the wavenumber and 
frequency of the disturbance should change as it propagates into locally less or 
more unstable parts of the flow. The phase-equation approach provides a rational 
framework for following such an evolution. If the wave has local frequency and 
wavenumber which are O( 1) with respect to the variables t and x we introduce slowly 
varying variables T and X by writing 

T = d t ,  X = 6 . ~ ,  

and we now think of a and s2 as being functions of X and T. Thus we introduce the 
phase function O ( X ,  T )  defined by 0 = O(X, T) /6  with 

and as 

Partial 

a = e x ,  a =-eT 

aT + Szx = 0. 

a consequence the wave system evolves such that 

(1.1) 

derivatives with respect to x and t must then be replaced using 

a a a a  a a 
- +a-  +6- 
ax a 0  ax' at a@ dT 

- + -Q- +6-, 

and if we then equate terms of O(6)' we recover the unmodulated equations of motion 
with a and 52 playing the role of wavenumber and frequency. Thus the leading-order 
problem using the phase equation approach is simply the unmodulated case with a 
and SZ being functionally related in order that the system, with a given disturbance 
size, has a solution. At next order (usually O(6) but in fact O ( C ~ ' / ~ )  in triple-deck 
problems) we obtain a linearized inhomogeneous form of the leading-order problem. 
Owing to the invariance of the problem under a translation in the x-direction it is 
easy to see that the linearized homogeneous form of this system has a non-trivial 
solution so that some solvability condition must be satisfied if the inhomogeneous 
problem is to have a solution. This solvability condition is satisfied by introducing an 
expansion of SZ in appropriate powers of 6. The solution of this problem then enables 
us to write down the asymptotic form of (1.1) up to the second order. This procedure 
can be continued in principle to any order and the coefficients in the expansion of 
1;2 are found as solvability conditions at each order. The evolution of a given wave 
system can then be found by the solution of the calculated asymptotic approximation 
to (1.1). We find that (1.1) takes on a particularly simple form if the wave system has 
fixed wavenumber and frequency at leading order. We shall in this paper calculate 
(1.1) correct up to second order for both wave systems governed by triple-deck theory 
and those satisfying the two-dimensional Navier-Stokes equations. We can show that 
at high Reynolds numbers (l.l), may then be reduced to the form 

where A is a wavenumber perturbation and B will be defined later. 
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Tollmien-Schlichting waves in a growing boundary layer. 
This is in effect the evolution equation for a wave packet of large-amplitude 

At finite Reynolds numbers the modulation equation corresponding to (1.2) is 

A ,  + AAt  = fA5t.  (1.3) 

Thus at finite Reynolds numbers Burgers equations controls the slow dynamics of a 
two-dimensional wave system. 

The procedure adopted in the rest of this paper is as follows: in $2 we derive 
the phase equation for two-dimensional triple-deck problems. In $3 we describe the 
numerical work required to determine the quantities appearing in the equation. In 
$4 we look at the special case of almost uniform wavetrains and derive (1.2). In $5 
we show how the equivalent of (1.2) can be derived for amplitude perturbations by 
a more conventional multiple-scale approach directly from the triple-deck equations. 
The phase-equation approach for a boundary layer at finite Reynolds numbers is then 
discussed in $6. The modulation equation (1.3) is derived in that section as a special 
case for almost uniform wavetrains. Finally in $7 we draw some conclusions and 
give the generalized form of the evolution equations which accounts for non-parallel 
effects. 

2. Derivation of the phase equation for two-dimensional triple-deck 
problems 

Our concern is with the structure of fully nonlinear solutions of the triple-deck 
equations governing the evolution of two-dimensional Tollmien-Schlichting waves in 
incompressible boundary layers. Following the usual notation, e.g. Smith (1979a), the 
appropriate differential equations in scaled form are 

au aU 
ax a y  
- + - = o ,  

au au au ap a% 
- + u- f u -  = -- + - 
at ax a y  ax a y '  

u = u = 0, y = 0, 

which must be solved subject to 

(2.la) 

(2.lb) 

(2.2a) 

(2.2c) 

The displacement function A and the pressure p depend only on x and t and if we 
wish to consider other flows the pressure displacement law (2.2~) must be modified 
accordingly. Linear Tollmien-Schlichting waves correspond to perturbing u in the 
form 

with U small and, from Smith (1979a), the eigenrelation takes the form 
= y + U ( y ) e ' a ( x - Q ~ a }  (2.3) 

Ai' (to) = (i~c) ' /~a 1; Ai(q)dq. (2.4) 

where Ai is the Airy function and to = -is2 Solutions of (2.4) with s2 complex 
and CI real show that neutral stability occurs for f2 = 2.298, a v 1.001, and that Qi is 
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positive for all frequencies greater than the neutral value. In the high-frequency limit 
it can be shown from (2.4) that 

(2.5) 
The above limit was discussed in detail by Smith & Buggraff (1985) who investigated 
the possible nonlinear structures which emerge in that limit, see also Zhuk & Ryzhov 
(1982). The structures found by Smith & Burggraf depend crucially on the fact that 
the right-hand side of (2.5) is complex only at order 52- l I2  so that, even though a 
wave is never neutral, its small growth can be balanced at higher order by nonlinear 
effects. Here our interest is with the case u = O( l), i2 = 0(1), but we shall allow for 
a slow evolution of the wave system as it moves through the boundary layer. The 
essential details of our approach are to be found in Howard & Kopell (1977) who 
were concerned with slowly varying waves in reaction diffusion systems. As a first 
step we introduce slow time and space variables, T and X ,  by writing 

T = St,  (2.6~) 

x = 6t, (2.6b) 
where 6 is a small positive parameter. Note that at this stage 6 is simply a device 
for introducing a modulation length into the problem; later it will be related to a 
wavenumber perturbation. We shall investigate the evolution of a fully nonlinear 
wavelike solution of (2.1)-(2.2), but allow the wavenumber and frequency to be slow 
functions of X and T .  

In order to describe such a structure we introduce a phase function O(x,t) such 
that the wavenumber and frequency of the wave are defined by 

u = a + o(a-1’2). 

The wavenumber and frequency must therefore satisfy 

aa as2 
at ax 
-+-=o, 

and (2.8) therefore corresponds to the conservation of phase. Now we shall assume, 
following Howard & Kopell (1977), that u and a are functions only of X and T .  In 
that case (2.8) reduces to 

au aa 
aT ax -+-=o.  

and it is then convenient to write to phase variable 0 = 6-’8(X, T). The x and t 
derivatives in (2.1)-(2.2) must then be transformed according to 

a a a 
ax ao ax 
a a a 
at ao aT 

- +a- +6-, 

---i2-+6-. 

(2.10~) 

(2.10b) 

We seek a locally wavelike solution of (2.1H2.2) and impose periodicity in the phase 
variable 0. It remains now for us to find a small 6 solution of the full triple-deck 
problem (2.1)42.2). At first sight, in view of (2.10), we would expect to develop a 
solution of that system in terms of 6. However, it turns out that for 6 << 1 the 
leading-order approximation to (2.1)42.2) has a mean term correction which depends 
on the slow variable X. This mean flow is modified in an outer 0(6 - ’ /3 )  diffusion 
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layer. The expansions must therefore proceed in powers of 61/3 and we therefore 
write 

~2 = ~ 2 ~ + 6 ~ / ~ ~ ~  +-- . ,  (2.1 la) 

u = U O ( X , T , O , Y ) + ~ ” ~ U ~ ( X , T , O , Y ) + . . . ,  (2.114 
u = %(X, T ,  0, Y )  + 61/3u1(X, T ,  0, Y )  + * * * ,  

p = 6-1/3pw(~,  T )  + pO(x, T ,  0) + 6 1 / 3 p l ( ~ ,  T ,  0) + . . . , 
A = Ao(X, T ,  0) + 61/3A1(X, T ,  0) + .  . * . 

(2.11b) 

(2.1 Id) 
(2.1 le) 

Here we have anticipated the presence of what can be thought of as a pressure 
eigenfunction, p ~ ,  in the expansion of the pressure. The need for this function will 
become clear later when we investigate the outer diffusion layer in which the mean 
flow correction adjusts so as to match with the main deck solution. The leading-order 
problem is then found to be 

(2.124 

(2.12b) 

~ = U o = O ,  y = o ,  (2.124 

uo-y+Ao(X ,@,T)  Y +a, (2.12d) 

(2.12e) 

Hence the leading-order problem is obtained from the full two-dimensional problem by 
restricting attention to solutions in the form of travelling waves of local wavenumber 
a and frequency 510. This specifies a nonlinear eigenvalue problem 

QO = %(a), (2.13) 

which must be determined numerically. At this stage we assume that (2.13) and the 
corresponding nonlinear eigenfunctions uo, UO, po and A0 are known. We further note 
A0 may be written in the form 

Ao = Ao(X, T )  + Ao(Q,x, T )  (2.14) 

where 20 has zero mean with respect to 0. In order to match the mean flow correction 
with the flow in the main deck we must investigate the outer boundary layer where 
convective effects on the slow streamwise lengthscale come into play. Before we 
investigate the outer boundary layer it is convenient to discuss the next order system 
in the y = O( 1) region. The equations to be satisfied are 

au, aU, 
a 0  ay 

a-+-=O, (2.152) 

subject to 

u1 = u1 = 0, y = 0, (2 .15~)  
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and 

(2.1 5d) 

In addition we require a condition involving u1 at the edge of the boundary layer. 
On the basis of (2.2b) we might expect that, u1 + A I ,  y + co, is the appropriate 
condition. However, A1 is essentially the displacement function in the main deck and 
u1 is modified in the outer boundary layer in which the mean flow correction evolves. 
For completeness of the O(a1l3) system we anticipate the form of the matching 
condition found from a consideration of the outer layer. The appropriate condition 
is 

u1 + D1+ ElY, Y + co, (2.16) 
where D1 is to be found in terms of A1 by a consideration of the outer boundary 
layer and El will be found in terms of the mean flow correction in the outer layer. 
For large values of y we have u - y so that the thickness of the outer layer is fixed 
by the balance 

a a 2  
yd- - - ax a y 2 *  

Hence we write 

and now develop an asymptotic solution of (2.1)-(2.2) valid for q = O(1). The solution 
here is similar to that in the main deck for two-dimensional triple-deck problems. We 
write 

q = gl/3y 

= 84 /3  { P M  + . * *}  + Po + 8”3P1 + ‘ * * ,  

Here the terms in the first bracket of each expansion correspond to the mean flow. If 
we substitute the above expansions into (2.1)-(2.2), and make the appropriate changes 
of variables, then we find that the functions Vo, U1 are given by 

uo = Ao, 
and 

where A1 is the displacement function in the main deck solution. The functions U M  
and V M  are found to satisfy 

u1 = A1 + A O U M v ,  

which are to be solved subject to 

U M = & ,  ? J M = o o ,  q = o ,  t (M + F ,  q 

where F is a displacement function related to p~ by the usual pressure displacement 
law. The solution of the above problem for the mean flow correction is most easily 
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obtained using a Fourier transform with respect to X and indeed the solution of the 
problem is given by Smith (1973). For the purposes of our calculation we need only 
the quantity uMM1(0) which gives the jump in U1 which occurs across the diffusion 
layer. Following Smith (1973) we find that 

(2.17) 

with /3 defined by 

where x = -3Ai'(0) = 0.8272 
parts of the expansions in the lower deck and the transition layer match if 

.. We see that the O(S*/3) correction to the wavelike 

D1 =A1 +J, (2.18) 

whilst the mean parts match if 
El = J, (2.19) 

where J is defined by (2.17). 
The quantity 01 is now determined as a solvability condition on the inhomoge- 

neous system specified by (2.15), (2.16) and (2.19). Such a condition is required 
because of the translational invariance of the leading-order wave system with re- 
spect to 0. Therefore a solution of the homogeneous problem is found by setting 
( U I , U I , P I , A I )  = 8 ao(uO,uo,po,Ao). In order to find the appropriate solvability condi- 
tion it is convenient to define Z = (pI,uI,uI - Jy,ul, - J ) * .  We then must determine 
the condition that the inhomogeneous system given below has a solution: 

az az 
aY ao - = BZ + C- + SZlFl+ GI, 

0 0  
0 0  
0 1 B =  

r o  i r 

0 '  : I  0 0  0 
0 0  --a 
0 0  0 
a 0 auo-510 0 

, c =  

subject to 
u1 = U ]  = 0, y = 0, 

U I  + A1 + J ,  y + 00, 

p l = -  -. 
R -a f" -"X-S1 aA1'as 

The system adjoint to the homogeneous form of the above problem is 

aJ aJ -- = J - CT-, 
aY ao 
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with 

J = (M, N, S ,  T)T, 
and subject to the conditions 

M = T = O ,  y=O, 

s+o, y + m ,  

M -+ Mm(0), T + T,Y-~, y + 00 with T,  = - -‘fe ~ ds. 
a71 -m(X-S)  

The condition that the problem for (ul,ul,pl,Al) has a solution is then found to be 

n, = J K ( u ) ,  (2.20) 

with 

At this stage we can write down the phase conservation equation correct to order 
8’f3.  We obtain 

(2.22) 

and the expansion procedure given above can in principle be continued to any order. 
We postpone a discussion of the implications of (2.22) until we have described the 
results of the calculations required to determine a, 00, a,. 

3. The numerical work 

00 in the form 
The system (2.12) is periodic in 0 so we seek a solution by expanding for example 

m 

uo = C uom(y)eime. (3.1) 
-m 

After eliminating porn and some linear terms proportional to UO,,, from the 0 momen- 
tum equation, the equation to determine u b  may be written in the form 

where R, is a nonlinear function of {uom}, {uom}. The equation for the mean part of 
~0 is then written as 

(3.3) 
d2um dl - = -  
dy2 dy’ 

where I is a nonlinear function of (wm}, {uom}. The functions UOO, tram, VO,,,,, must vanish 
at the wall whilst uooy,uom~,, tend to zero for large y. The remaining condition relates 
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FIGURE 1 .  The dependence of (a) a and ( b )  Qo on (4 + d:)' l2. 

u,(w) and ulm(0) using the equation of continuity. We used central differences to 
evaluate the derivatives in (3.2), (3.3) and a solution of the resulting nonlinear system 
was found by iteration after first restricting m to be less than say M. In our iterative 
technique the right-hand sides of (3.2) and (3.3) were evaluated at the previous level 
of iteration and one boundary condition was replaced by 

u;)(co) = co + id0 

where co and do are prescribed real constants. After the iterations converged we then 
adjusted a and 52 until the previously ignored boundary condition was satisfied. Note 
here that, because the solution of (2.12) is unique only up to a phase shift, the values 
of a and 52 obtained by this procedure are functions only of {ci + d;}'/'. 

The grid size and the value of M were varied until converged results were obtained. 
In the following discussion the results presented correspond to M = 32, and 200 
grid points in the y-direction with 'infinity' at y = 10. In figures l (a )  and l(b) we 
show the dependence of a and 52, on the quantity (ci + di)'i2 which is a measure 
of the disturbance size. We see that, as predicted by Smith (1979b), finite-amplitude 
motion begins as a supercritical bifurcation from Blasius flow. In figure 2 we plot 
520 as a function of a. The calculations could not be continued beyond the point F 
shown on the figure; we will return to this point later. We further note that 520 is 
a multiple-valued function of a for a range of values of a and that SzA(a) becomes 
infinite when a ,., 1.0145. In figure 3 we show the shear stress as a function of 0 for 
a range values of 520. The results shown in this picture suggest a reason why figure 2 
cannot be continued beyond the point F. We see that as the point F is approached 
the shear stress approaches zero at a point. In figure 4 we show how the contribution 
to the shear stress from the different modes varies as G!o varies. We see that the higher 
modes grow rapidly as F is approached. This suggests that the shear stress becomes 
singular as F is approached. 

Beyond the point F our calculations failed to converge because the procedure used 
to solve (3.2)-(3.3) failed to drive the residuals below the tolerance level, used 
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E 

U 
FIGURE 2. The dependence of 610 on a. The symbols denote the results of Conlisk et al. (1987). 

throughout our work. A similar result was found by Conlisk et al. (1987) who solved 
(2.12) by an indirect method. In their calculation the Tollmien-Sclichting waves were 
first forced by a wall motion and then their properties extrapolated as the forcing was 
reduced to zero. The results of Conlisk et al. (1987) have been plotted in figure 2 and 
we see that, on the whole, there is good agreement with our work when our program 
produced converged results. Some of the larger-amplitude results by Conlisk et al. 
were obtained by reducing the tolerance level in their iteration procedure. A similar 
reduction of the tolerance level in our code enables us to continue figure 2 for slightly 
larger disturbance amplitudes but we do not plot them for the following reasons. 
First, we found that a reduction of the tolerance level made our results very sensitive 
to the grid size. Second, a reduction of the tolerance level at best only enabled us 
to continue our calculation until ct was reduced to about 1.012. Furthermore, the 
results of figure 3 suggest to us that the curve of figure 2 terminates at a point close 
to F where all the harmonics are excited and a singularity has been encountered. 
Therefore it does not seem sensible to plot results obtained by reducing the tolerance 
level further. Further calculations were carried out at large frequencies in order to 
find finite-amplitude solutions of the type predicted by the Smith-Burggraf theory. 
Despite a careful search of the parameter regime identified by Smith & Burggraf 
(1985) no solutions could be found, but this does not mean that they do not exist. 

The next calculation required concerned the constant 01 defined by (2.20). In 
order to calculate 01 from (2.20) it is necessary to compute the adjoint function 
J = (M, N , S ,  T ) .  In fact it is easier to solve the problem for (ul,vl ,p1,Al) directly 
and find the value of 01 which enables all the required boundary conditions to be 
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1.4 

1 .o 

uOY 

0.6 

0.2 

I I I I 4 I I 

0 2 4 6 
0 

, increasing 

FIGURE 3. The shear stress as a function of 0 for 
Qo = 2.2995, 2.3041, 2.3125, 2.3245, 2.3398, 2.3575, 2.3763, 2.395, 2.4124, 2.4275. 

satisfied. It was easier to compute i2, in this way because the system for ( u , , u ~ , p , , A ~ )  
can be solved using essentially the same iteration method as used above for the 
solution of (2.12). In figure 5(a) we show the dependence of K on the wavenumber 
a. The fact that K is singular at a = a, = 1.0145 is a direct consequence of the fact 
that i2’(aC) = 0. In figure 5(b)  we show the dependence of on a and we observe 
that A h  is respectively negative and positive on the lower and upper branches of 
figure 2. Here the upper and lower branches correspond to points on figure 2 which 
are respectively above or below E .  The singularity in &, is due to the fact that &, 
continues to decrease when a passes through a,. The fact that both K and &, change 
sign at a, means that viscous effects have essentially the same destabilizing role on the 
upper and lower branches when uniform wavetrains are considered; see the following 
section. 

Now let us discuss the implications of our calculations for the evolution equation 
(2.22) which we recall determines the wavenumber a correct up to order all3.  The 
term on the right-hand side of (2.22) is due to viscous effects and the results of figure 5 
imply that viscous effects are destabilizing. The zeroth-order approximation to (2.22) 
yields 

(3.4) 

where cog is the group velocity. We see from figure 2 that the group velocity is 
negative for the upper branch and positive otherwise. This suggests that the upper 
branch solutions are physically irrelevant since their energy propagates upstream. 
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FIGURE 4. The shear stress u;h(O) as a function of Qo for the first sixteeen modes. 
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In fact, the form of figures l(b) and 2, and the known result about the stability at 
small amplitude of Tollmien-Schlichting waves, Smith ( 1979b), suggests that solutions 
corresponding to the upper and lower branches would be found to be unstable and 
stable, respectively, if a Floquet analysis of them were carried out. 

Suppose then that we consider the evolution of disturbances corresponding to the 
lower branch of figure 2. If at T = 0 we are given 

a = E(X) ,  

then for T positive we have 
a = h(X - w,(a)T), 

which determines a implicitly since wg is a function of a. It is well known (e.g. 
Whitham 1974), that for positive wi  the above solution will become multivalued 
after a finite time if the initial data has a compressive part. This suggests that finite- 
amplitude Tollmien-Schlichting waves will develop discontinuities in wavenumber and 
frequency as they propagate downstream. When such shocklike structures develop, 
(3.4) is no longer valid, and the viscous term must be brought into play. We might 
expect that the situation then is similar to that for Burgers equation (see Whitham 
1974), where viscous effects smooth out shocklike solutions but do not prevent their 
development. Now we shall concentrate on a case where more analytical progress is 
possible and investigate nearly uniform wavetrains. 

4. Uniform wavetrains and their stability 

corresponding wave with 
0 = ~ ( Q X  - i20(ao)T) 

corresponds to a constant frequency/wavenumber solution of the full two-dimensional 
triple-deck problem for Tollmien-Schlichting waves. The stability of this system can 
be readily investigated by use of the phase equation (2.22). We first write a = a0 + A ,  
where A is small, and then (2.19) becomes 

Suppose that (c(o,SZg(~)) is some point on the curve shown in figure 2. The 

d A  , ad ad 3 .  
aT ax ax 2n -+Qo(ao)- +S~,"(Q)A - = - - A 1 ( 0 ) ~ ~ / ~ 6  1/3~(a0)-  - 

+0(61 /3~* ,  A ) ) .  
Note that KAoa is negative on both the lower and upper branches respectively of 
figure 2. 

We can eliminate the term proportional R ~ ( Q )  by an appropriate Galilean trans- 
formation. If we then take T = O(6-ll3), A - 81/3 with X = O(1) then, in the limit 
6 -+ 0, a suitably rescaled version of the above equation is 

Therefore the longwave instability of a uniform wavetrain of Tollmien-Schlichting 
waves is governed by the apparently new evolution equation (4.1). 

Suppose now that at 7 = 0 there exists a small initial perturbation A = A o ( t ) .  The 
linearized form of (4.1) shows that A evolves according to 

1 "  
A = -  2nl/2 [, exp [ikt + CrI % 
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where A; is the transform of the initial data and 
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-2nik(ik)1/3 
C(k)  = 

1 - { i ( 3 d ~ ) ~ / ~ ( k  + i0)1/2(k - iO)1/2}{T(3)k3}’ 

Here (k f i0) are defined with branch cuts in the lower and upper half planes 
whilst the argument of (&)‘I3 is kn/6 for k on the positive and negative real axes 
respectively. The real part of C is positive for real k. In fact the growth rate 
increases monotonically from zero when Ikl increases and behaves like lk)4/3 at large 
wavenumbers. This means that a small disturbance to a uniform wavetrain of two- 
dimensional Tollmien-Schlichting waves always grows and the wavetrain is therefore 
modulationally unstable. Furthermore, since the growth rate tends to infinity in the 
short wavelength limit, linear theory certainly suggests that solutions to the evolution 
equation will develop a singularity after a finite time. It can be seen that the ultimate 
form of the disturbance depends on A;@). More precisely we see that when A,(<) is 
sufficiently concentrated the solution will develop a singularity at a finite time. Thus 
for example an initial disturbance of Gaussian form will have /I; - exp(-k2) and a 
bounded solution will occur for all time. However, if A; - exp lkI4l3 the solution will 
become unbounded after a finite time. This is an important result because it says 
that a constant wavenumber/frequency solution of the two-dimensional triple-deck 
problem for Tollmien-Schlichting waves is always unstable to a long-wave instability. 
This is not uncommon in physical problems, e.g. the Stokes water wave, nonlinear 
optics. For a discussion of such modulational instabilities the reader is referred to 
Whitham (1974). 

In fact the short wavelength instability of the linearized form of (4.1) suggests a 
rescaled version of the full nonlinear evolution equation when the amplitude of the 
disturbance becomes large. The new evolution equation is found to correspond to the 
case when the integral term in (4.1) is replaced by a simplified integral with transform 
obtained by replacing the denominator in the definition of Z by unity. We derive 
the simplified form of the evolution equation by assuming a new short lengthscale 
O(a) in the l-direction and working out the asymptotic form of the integral term in 
(4.1) based on the assumption that A now varies on this new short lengthscale. The 
amplitude of r and time are then rescaled so that the terms on the left-hand side of 
(4.1) balance the integral term for small g. Thus we write 

where 8 is small and seeking a solution of (4.1) with 

The leading-order approximation to the evolution equation (4.1) in the limit of small 
8 is obtained by noting that the dominant contribution to the integral in (4.1) occurs 
for positive values of the argument of the function B. Using the asymptotic expansion 
of the function B(t )  for small t we obtain 

Note that in order to produce this canonical form for the evolution equation we 
have rescaled the variables by O( 1) amounts. The linearized form of (4.2) has exactly 
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the same short wavelength instability as the original equation (4.1) so that if (4.2) 
is encountered after a localized breakdown of (4.1) it is likely that this new regime 
will itself suffer a subsequent breakdown. Later we shall present numerical results 
consistent with this suggestion. The breakdown of the linearized forms of (4.1), (4.2) 
is a direct consequence of the fact that the viscous-like operators on the right-hand 
sides of these equations are destabilizing. In (4.2) the term on the right hand side can 
be thought of as a fractional derivative of order :. 

The discussion above suggests that an initial disturbance to either the linearized 
form of (4.1) or (4.2) will result in a finite time singularity if the transform of the 
initial disturbance does not decay faster than e-lk14’’. However, the argument we 
have given completely ignores nonlinear effects. Unfortunately, nonlinear effects are 
unable to prevent this type of breakdown. If viscous effects are negligible, (4.1) and 
(4.2) reduce to the inviscid Burgers equation. It is well known, Whitham (1974), that 
Burgers equation develops a shock from rather arbitrary initial data. Therefore an 
initial disturbance which is not capable of causing a breakdown of the linear problem 
is modified by nonlinear effects until the locally rapidly varying structure associated 
with the generation of a shock is amplified by viscous effects into a singularity. We 
shall now present numerical results consistent with this description. 

4.1. Numerical solution of the wavenumber modulation equation 
Now let us discuss the results of some numerical investigations of the evolution 
equations (4.1) and (4.2). The calculations were carried out using a pseudospectral 
code kindly supplied to the author by D. Papageorgiu. The code was originally written 
in order to solve the Kuramot-Sivashinsky equation which is sufficiently similar to 
(4.1) and (4.2) for it to be trivially modified for the present investigation. The reader 
should consult for example Papageorgiu & Smyrlis (1991) for a full discussion of the 
code but for the sake of completeness we give the essential details here. The code 
uses a FFT approach to evaluate the nonlinear terms whilst the time integration is 
carried out using a predictor-corrector method. The code maintains spectral accuracy 
for initial data which is periodic in the spatial variable and the integral terms in 
the evolution equations conveniently transform into linear terms with wavenumber 
dependent coefficients in transform space. The results given in this section correspond 
to 4096 points in the spatial direction and a timestep The results presented 
are grid-independent and are typical of those obtained for a wide vaiety of initial 
conditions. For brevity we report on results for just one initial condition. 

In the first instance we integrated (4.1) subject to the initial condition 

A = 211 sin 5 ,  (4.3) 

and we note that the code preserves spectral accuracy for such a condition. Cal- 
culations with different initial conditions are of course possible but require more 
computational resources. Incidentally we note here in passing that each of the cal- 
culations reported on below took about two hours on a Silicon Graphics Indigo 
workstation. 

In figure 6(a )  we show the evolution of A when z increases. The initial steepening 
of the wave is due to the nonlinear term in the evolution equation. Later on in the 
calculation we see the development of a localized singularity just before the wave 
trough. Until the breakdown of the solution towards the end of the calculation the 
integral term is negligible and A satisfies the inviscid Burgers equation. At the end of 
the calculation the steepening of the wave as a result of nonlinear effects produces a 
region where viscous effects come into play. At this stage a local singularity develops 
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FIGURE 6. (a,b) Numerical results for the solution of (4.1) subject to the initial conditions (4.3). The 
curves shown correspond to 2x7 = 0.012, 0.084, 0.156, 0.228, 0.3, 0.372, 0.444, 0.516, 0.588, 0.6612, 
0.6264. 

and the calculations ultimately fail. The position where the breakdown occurs is of 
course a function of the initial disturbance and is independent of our discretization. 
In figure 6(b) we show the development of A around the breakdown position. 

In figure 7 the modulus of A in wavenumber space is shown for increasing values of 
T. The energy in each wavenumber is seen to decay exponentially with wavenumber 
for most of the calculation. However, at later times we see that a kink develops in the 
curves and the exponential decay is lost. This change of structure is associated with 
the onset of the singularity. From this calculation it follows that a small perturbation 
to the wavenumber of a uniform wavetrain ultimately becomes unbounded and we 
conclude that the uniform wavetrain is modulationally unstable. The fate of the flow 
after the onset of the singularity is yet to be established but we note that 'in addition 
to terms of higher-order in S neglected in the derivation of (2.22)' viscous diffusion 
in the streamwise direction or higher order terms in the Navier-Stokes equations 
might come into play and prevent the unbounded growth of the perturbation. An 
alternative outcome might be that the perturbation takes the flow back to a situation 
governed by triple-deck theory but without periodicity in the streamwise direction. 
We hope to report on this matter at a later stage. 

Now let us discuss the results of our calculations involving the second wavenumber 
evolution equation (4.2). The equation was integrated subject to the same initial 
condition (4.3) and figures 8 and 9 show the evolution of A in time. The results are 
essentially identical to those obtained for (4.1). Perhaps this is not surprising since the 
integral terms in the different evolution equations are virtually identical over most of 
wavenumber space. In the present case the steepening is again due to nonlinear effects 
and the breakdown occurs at a slightly earlier time. Otherwise the discussion given 
above for the results on the integration of (4.1) applies. We conclude that uniform 
wavetrains of two-dimensional Tollmien-Schlichting waves are unstable. 

4.2. Breakdown of the full nonlinear problem 
The calculations discussed above suggest that after a finite time a singular solution 
of (4.1) develops and that locally it is described by (4.2) in the first stages of the 
breakdown. Singular solutions of the linearized form of (4.2) are readily obtained 
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using a Fourier transform technique. We do not present them here since they are 
presumably irrelevant in the nonlinear breakdown process. 

Now let us consider a possible breakdown form for the full nonlinear system (4.1). 
If the breakdown is governed by the inviscid form of the equation then, following 
Brotherton-Ratcliffe & Smith (1987), we can, after a suitable shift of origin, write 

A = lrln-'Qo(q) + * * .  , 

with q = </lrl". The term on the right-hand side of (4.1) is then negligible for n < 
and Qo is then given implicitly by 

(4.4) q =  -Qo - e0Qo9 

with eo a positive constant. However, (4.4) only determines Qo as a single-valued 
function of q when n = L/L - 1, L = 3,5,7, + .  ., so that this type of structure is not 
possible. However, we can take n = 3 in which case Qo satisfies 

3 

The above integral equation must then be solved numerically. 

5. The modulation equation for amplitude perturbations 
We shall now use a multiple-scale approach to derive the equivalent of (4.1) directly 

from the two-dimensional triple-deck equations (2.1). Again the major effect of the 
modulation is to introduce a layer of depth 8-1/3 sitting on top of the lower deck. 
We again define slow variables X and T by writing 

X = ~ X ,  T =at. (5.la, b )  
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It is then convenient to define 3, P by 

2 = X - w g T ,  ? = c ~ ' / ~ T ,  (5.2a, b) 

where wg is a group velocity to be determined at higher order in our expansion 
procedure. Suppose then that we seek a solution of the triple-deck equations which 
is periodic in 4 = ax - SZt where a and SZ are now taken to be constant. In the lower 
deck we expand u in the form 

together with similar expansions for u and p. We note at this stage that the summation 
term in (5.3) arises because of the translational invariance of a solution of the two- 
dimensional triple-deck equations. In agdition we note that the first correction to the 
underlying mean state dependent on X arises at O(S4/3) in (5.3). It should also be 
sJressed>t this stage t!at,&, the 0(1) term in (5.3), is independent of the slow scales 
X and T and that B ( X ,  T )  is an amplitude function to be determined. Thus in (5.3) 
we identify the term G1/3B(auo/a4) as a small-amplitude perturbation to the periodic 
flow ~ ( 4 ,  y ) .  The eigenfunction dtq,/&$ occurs because of the translational invariance 
of any +periodic solution of the triple-deck problem. For our purposes here it is 
sufficient to consider the partial differential equations to determine (ug, u4, p4) and 
(us, u5, p5). If the expansions for u, u, p are substituted into the triple-deck equations, 
and the appropriate change of variables made, then we find that ( ~ 4 , ~ 4 , p 4 )  satisfies 

(5.44 

P4y = 0. (5.44 

These equations must be solved subject to u4 = u4 = 0, y = 0 whilst for large y the 
appropriate conditions are 

u4 + f), ( 5 . 5 )  

with 

Since the homogeneous form of the system for (u4,u4,p4) has the solution (u+ug,p4) = 
(a /a$)  (u,,,uO,po) it follows that a solution exists only if an orthogonality condition 
is satisfied. This may be written down following the procedure used in $4. It is 
sufficient here to note that the condition determines the group velocity wg and that 
the expression obtained is identical to that derived in $3 after making a perturbation 
in the wavenumber. The solution of (5.4) is clearly of the form 

(u4, u4, P4) = B@4, V4, P4), 2 = BaA, 

where (U4, V4, P4) and A are independent of 2, '-i.. The other main feature to 
appreciate about the solution of the O(S4I3) problem is that at the edge of the 
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y = O( 1) region U4 may be expressed in the form 

u4 A = (AM f AF(4))BR, 
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where AM is independent of 4 and therefore corresponds to a mean flow correction. 
The reduction to zero of AM is achieved in the outer O ( C ! - ~ / ~ )  region in a similar 
manner to that found in $3. We define the variable 91 by 

9 = #/3y 

and in the outer b - 1 / 3  layer u is expanded in the form 

where UM is the mean flow correction driven by A M .  The mean flow correction in 
the q direction is S*VM and the linear problem to determine ( U M ,  VM, P M )  is identical 
to that with which we found ( u ~ , u M , p M )  satisfied in $2. Therefore it may be solved 
again using a Fourier transform technique, the solution is not repeated here. The 
mean flow at order d4j3 then interacts with the O(6O) flow to produce an O(J5l3) 
correction to the outer boundary condition for the disturbed flow in the y = 0(1) 
layer. Again the analysis follows closely that of $2 so we do not repeat it here, we 
find that (us, u5, p s )  must satisfy 

where 2 is a constant. In the y = 0(1) region ( U ~ , U ~ , P S )  is found to satisfy (5.4a,b) but 
with the right-hand sides of these equations replaced by [*I, and 

respectively. Here [ a ]  denotes terms which contribute to the solvability condition 
which the system for (us,u5,p5) must satisfy. The required condition is 

where g1,A are constants and a suitable change of variables enables us to recover 
(4.1). However, as pointed out to the author by R. Hewitt, g ,  is identically zoo and 
(5.7) reduces to the linear form of (4.1). It can be shown also that all higher-order 
nonlinear terms do not contribute to (5.7). 

6. The phase-equation approach for a parallel boundary layer 
In $2 we derived the phase equation for Tollmien-Schlichting waves in a Blasius 

boundary layer. Such a boundary layer exists only at asymptotically large values 
of the Reynolds number and it was therefore appropriate to utilize the largeness of 
the Reynolds numbers in the description of the instability wave. However, linear 
descriptions of the evolution of Tollmien-Schlichting waves at finite Reynolds num- 
bers have been given by, for example, Gaster (1974). Though such approaches do 
not give formal asymptotic approximations to the equations of motion it appears 
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that they correctly predict the essential physics of the linear growth of Tollmien- 
Schlichting waves. Similarly, large-scale numerical simulations of nonlinear growth 
of Tollmien-Schlichting waves at finite Reynolds numbers have proved equally suc- 
cessful at reproducing experimental results, e.g. Wray & Hussaini (1984). Here we 
wish to investigate the phase-equation approach at finite Reynolds numbers but, in 
order to keep our asymptotic analysis formally correct, we choose to work with a 
parallel boundary layer which is an exact solution of the Navier-Stokes equations at 
all Reynolds numbers. We refer to the asymptotic suction boundary layer which has 
been investigated in the weakly nonlinear regime by Hocking (1975). Suppose then 
that the free-stream speed is UO and the suction velocity is Vo. We define a reference 
length L = V/Vo and define the Reynolds number 

but we assume that R = O(1) in this section. Since we restrict ourselves to two- 
dimensional disturbances it is convenient for us to define a stream function y and 
work with the vorticity equation in the form 

which is to be solved subject to 

Wy = 0, W X  = 1, y = 0, (6 .2~)  

w y - + 1 ,  Y - + W  (6.2b) 
In the absence of an instability the stream function tp is given by 

y =yo(x ,y)=y+e-y-x .  (6.3) 

This flow is unstable to two-dimensional Tollmien-Schlichting waves for R > 54370.0 
and the band of unstable wavenumbers tends to zero when R + 00. Here we assume 
R is O( 1) and assume that an O( 1) amplitude wave system is superimposed on (6.3). 
At finite R the mean flow driven by the wave system is confined to the boundary 
layer. Therefore no outer adjustment layer is required even when the wave system 
evolves slowly in the downstream direction, see Hocking (1975) for a discussion of 
this point. Suppose that X, T are defined by 

X = dx, T =at ,  

then we define 

and expand s2 in the form 

We seek a solution of (6.1) by writing 
f2 =Go +6f21 + . * a .  

and the leading-order problem is determined by solving 
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woY = 0, avos = 1, y = 0, 
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w o y  + 1, Y + 00, 

with 

and periodicity in 0 for {yo--O/a}. The required frequency and wavenumber, Qo and 
a, must be found numerically once some measure of the disturbance size is specified. 
We will not attempt such a calculation here but we note from the finite-Reynolds- 
number calculation of Hocking ( 1975) and the large-Reynolds-number theory of 
Smith (1979a,b) that both sub and supercritical bifurcations to finite amplitude 
Tollmien-Schlichting waves are possible. For the purposes of our discussion we 
simply assume that the nonlinear eigenrelation 00 = Qo(a,R) is known. At order 6 
we find that W I  is determined by 

where 

M = ML + MN. 

Here the linear and nonlinear functions M L  and MN are defined by 

ML. = R-1{4~V:~OQ, + 4Cr’Voge~ + 2V:woQ) + f&(a)V:WO + Q 0 ( 2 @ ~ 0 & 8  + V70SQ), 

and 

2 M N  = - ~ o y ( t v o c l ~ ~  + 3‘Woss + 3a ~ 0 s ~ ~ )  + awos(wosy + 2alyOe ym ) - V’ I Y O Y W ~ *  

The system must be solved subject to periodicity in 0 whilst the boundary conditions 
in y are 

(6.7a) 

w1 + 4(X), Y + 00. (6.7b) 

Here 4 ( X )  represents a mean flow normal to the wall at infinity. This flow is 
essentially driven through the equation of continuity by the O( 1) streamwise velocity 
component. A solvability condition is required if (6.6)-(6.7) is to have a solution 
since the translational invariance of (6) means that v1 = ayo/d@ is a solution of the 
homogeneous form of (6.6H6.7). It is worth pointing out at this stage that, if we were 
performing a calculation in a region of finite depth, then a pressure eigenfunction 
would have to be allowed for at leading order in order that 4 should be reduced to 
zero. The requirement for such an eigenfunction is well known in weakly nonlinear 
stability theory; see for example Davey, Hocking & Stewartson (1974) or DiPrima & 
Stuart (1975). The solvability condition can be found by writing 

z = (w, ~ W S ,  wy, v:w, aV:w@, v:w.JT, 

in which case the homogeneous form of (6.6) is 

a a 
ao a Y  

a-A2 + --BZ + C Z  = 0, 
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where A,B and C are 6 x 6 matrices defined by 

- 1 0 0 0  
0 0 0 0  
0 1 0 0  
0 0 0 1  
0 0 0 0  

-0 0 0 0 

A =  

0 0 -  
0 0  
0 0  
0 0 '  
0 0  
1 0 -  

0 0 -  
0 0  
0 0  
0 0 '  
0 0  
0 1 -  

0 0 0 0  1 1 0 0 0  

0 0 
0 0 
0 0 

-1 0 
0 -1 

- 

Rla~oy-QI  -RaWoe - 

0 0 1 0  
0 0 0 0  B =  I 

C =  

-0 -1 0 0 
0 0 -1 0 
0 0 0 -1 
0 0 0 0 
0 0 0 0 

,O -RV?yoy aRV$pos 0 

a a 
ao a Y  

- a-ATQ - - B T Q  + C T Q  = 0, 

together with conditions of periodicity in 0 and 

45=q6, y=o,ao.  

The condition that (6.6)-(6.7) has a solution then becomes 

au 
52, = --fl ax 9 

(6.10) 

with 

f ,  = J o  J o  

The phase condition In, + aT = 0 correct up to O(6)  becomes 

(6.1 1) 
a 

aT + aXQO(a) = dX { E X  f l ( a ) }  6-  

In order to examine the stability of a uniform wavestream solution we write 

a = a0 + A ,  

with A << Q, and (6.11) after a suitable change of scales becomes 

A ,  + A A ,  = +A,,. (6.12) 

Thus, we obtain the surprising result that the modulational instability of a two- 
dimensional wave system in a boundary layer at finite Reynolds numbers is governed 
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by Burgers equation. In (6.12) the signs correspond to the cases when diffusion 
effects are stabilizing/destabilizing respectively. Without calculating 52, we do not 
know which sign is appropriate for the problem under consideration here so we will 
discuss both possibilities. However, we can simply quote the known results about 
Burgers equation for each case and the implications for the stability of a uniform 
wavetrain are essentially the same. A full discussion of results quoted below can be 
found in Whitham (1974) and Howard & Kopell (1977). 

If the positive sign is taken the solution remains bounded for all time and indeed 
localized or periodic solutions of (6.12) tend to zero when T increases. However, even 
in the diffusively stable case weak shock solutions of (6.12) can develop; a discussion 
of this possibility is given by Whitham (1974), Howard & Kopell (1977). Thus, for 
any given uniform wavetrain whose instability is governed by (6.12) with the positive 
sign, an initial disturbance can be found which does not decay to zero at large times. 
The uniform wavetrain is therefore modulationally unstable. 

If the negative sign is taken in (6.12) viscous effects are destabilizing and in fact 
finite time singularities are developed from a broad range of initial conditions. Again 
it follows that the uniform wavetrain is unstable. 

We conclude that at finite Reynolds numbers modulational effects will either cause 
a finite time singularity to develop if viscous effects are destabilizing, or cause shock 
discontinuities in wavenumber and frequency in the stable case. In either case uniform 
wavetrains of two-dimensional Tollmien-Sclichting waves at finite amplitude should 
not be observed according to our theory. 

7. Conclusion 
We have used a phase-equation approach to determine the evolution of Tollmien- 

Schlichting waves at large and finite Reynolds numbers. In the high-Reynolds- 
number case we found that finite-amplitude disturbances, periodic in time and space, 
apparently exist only for a small range of values of the wavenumber a. The upper 
branch in figure 2 describes modes with negative group velocity and so they are 
therefore of no physical interest. The lower branch on the other hand corresponds to 
waves with positive group velocity and for these modes the rate of change of the group 
velocity with a is positive. This means that (2.22), the leading-order approximation 
to the phase equation, will develop discontinuities after a finite time for many initial 
disturbances. It might be anticipated that viscous effects, which appear on the right- 
hand side of (2.22), might smooth out such discontinuities. We cannot be sure if 
that is the case until a numerical investigation of (2.22) is carried out. However, in 
$4 we investigated the particular case of uniform wavetrains and found that there 
viscous effects were destabilizing and it seems likely that this is also the case for 
(2.22). In effect this means that periodic solutions of the triple-deck equations are 
modulationally unstable. A possible form for the structure of a singular solution of 
the breakdown of the nonlinear form of (4.1) was found. The structure found was 
based on the structure found by Brotherton-Ratcliffe & Smith (1987). The question 
of how the Navier-Stokes equations alter their large-Reynolds-number structure in 
order to remove the singularities of (4.1) also remains open. 

At finite Reynolds numbers we found that the evolution equation for a periodic 
wavetrain satisfies Burgers equation. Without extensive calculations we cannot say 
whether the viscous term in (6.12) has a positive or negative sign. If it turns out to be 
negative then viscous effects are again destabilizing and finite time singularities will 
occur. If the sign is positive then viscous effects are stabilizing. However, (6.12) can 
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be solved exactly by the Cole-Hopf transformation and it is known, Whitham (1974), 
that even in the stable case shocks will in general develop. Thus we conclude that at 
large or finite Reynolds numbers a uniform wavetrain of Tollmien-Schlichting waves 
will break down with a singularity or shock developing after a finite time. This casts 
some doubt on the validity of large-scale simulations of Tollmien-Schlichting waves 
using Fourier series expansions in the streamwise direction. 

In view of the fact that our analysis has been restricted to the two-dimensional 
case it is possible that three-dimensional effects might prevent the above predic- 
tions from occurring in practice. Nevertheless, experimental observations where the 
Tollmien-Schlichting wave is driven by a wavemaker suggest that the first step in the 
transition process is the linear growth of two-dimensional Tollmien-Schlichting waves 
followed by nonlinear saturation and three-dimensional effects coming into play, see 
for example Klebanoff, Tidstrom & Sargent (1962). 

Finally, we close with a brief outline of how (2.22) and (4.1) are modified by non- 
parallel flow effects. Non-parallel effects only enter a triple-deck description of TS 
waves parametrically except in particular cases. The calculation we have performed 
concerns the question of whether two-dimensional TS waves remain stable once they 
are established. 

Within the framework of (2.1) non-parallel effects manifest themselves through the 
pressure displacement law which allows for elliptic effects in the streamwise direction. 
However, the slow spatial evolution of the unperturbed shear flow does not enter 
(2.1) since it can be scaled out of the problem. For the weakly nonlinear growth 
of Tollmien-Schlichting waves Hall & Smith (1984) showed that non-parallel effects 
are important when the disturbance amplitude is O(R-’I3’) and lead to an amplitude 
equation of the form 

(7.1) 

with 8 a real constant. Thus non-parallel effects lead to the term X C  in (7.1) thereby 
causing the increased linear exponential growth of a small disturbance as it evolves in 
X .  Any small disturbance amplifying by this means eventually becomes nonlinear and 
for large X has (CJ2 - X .  Let us now show how related terms can be incorporated 
into (2.22) and (4.1). 

and that the Reynolds number 
has been effectively scaled out of the problem by our assumption that the Tollmien- 
Schlichting wave system is described by the triple-deck system (2. I).This assumption 
means that the analysis given so far in this paper is formally valid for 6 large 
compared to any positive power of c = R-‘/’. In order to reveal the effect of 
boundary-layer growth we now relax this condition and see which new terms play a 
role in (2.11a). Clearly (2.11~) must include terms proportional to powers of E because 
of the higher-order terms in the triple-deck expansion but in addition there will be 
a term proportional to r36-’X obtained by expanding the streamwise dependence of 
the unperturbed flow in a Taylor series in the streamwise direction. We therefore now 
expand the frequency in the form 

( 7 4  

The ordering of the terms in the above expansion depends on the relationship between 
6 and E. The term proportional to d4 is the first one dependent on the non-parallel 
nature of the basic flow. The first significant distinguished limit arises when 6 - E 

when the terms proportional to 8 3 ,  Q4 become comparable but still small compared 

We note that (2.11a) proceeds in powers of 

8 = 8 0  + 6’/3521 + € 8 2  + C2Q3 + E 3 6 4 X 8 4  + O(r  3 ,€ 6 6 - 2 , 6 2 / 3 ) .  
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to the O(S2I3) term. The next significant stage is when 6 decreases to e9/5 in which 
case the nonparallel term and the O(d2I3) term are comparable. However, the crucial 
stage arises when 6 decreases to e9I4 in which case the terms proportional to R1,Q4 
play an equal role and viscous and non-parallel effects are comparable. Thus if we 
write 

F~ = h16413, 

with hl an 0(1) constant then (2.2), correct to second order, now gives 

A further decrease in the size of 6 means that the term proportional to 52, should 
be dropped and non-parallel effects dominate the right-hand side of the equation for 
a. This completes our description of how the phase equation changes its structure 
when 6 is decreased. Note here that when we decrease 6 we are in effect moving 
further away from the initial location X* = X' so the above different orderings of the 
right-hand sides of (7.2) correspond to moving further downstream. Thus the final 
form has the right-hand side of the phase equation dominated by non-parallel effects. 

A similar procedure can be used to determine the appropriate modifications to 
(4.1) which is the evolution equation for the perturbed wavenumber of an initially 
uniform wavetrain. Here the crucial scaling brings in non-parallel effects at the same 
stage as the integral term driven by viscous terms. The appropriate scaling now has 

with ht an O(1) constant. Equation (4.1) then becomes 

- 4)dq + hq. (7.4) 

Here h3,h4 are constants proportional to h2, and h4 can be set equal to zero by a 
change of dependent variable. Therefore the non-parallel modulational equation for 
Tollmien-Schlichting waves in a growing boundary layer is (7.4) with h4 = 0. The 
inviscid form of this equation can be solved and the solution develops in a manner 
similar to the solution of the same equation with h4 = 0. Thus wave steepening 
occurs with a wide variety of initial data until viscous effects come into play and a 
singularity develops. Thus non-parallel effects do not alter the breakdown process 
associated with (4.1) and (4.2). 
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